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1. Curvature

Let f : I → R be a sufficiently many times differentiable function on an interval I.

Then the points on the graph of y = f(x) is a curve. However, not all curves could be

represented as a graph of such a real valued function on intervals viz, the figure of a circle

with centre (0,0) and radius 1 in the XY -plane R2 is one such example of a curve. In this

situation, we have to represent the equation of the circle as x = cos t; y = sin t, t ∈ [0, 2π].

These are called the parametric equations of the circle. Also, let us think of a spring put

in R3. Then the points of this spring is a curve. Thus formally we have the following

definition of a curve.

1.1. Definition. Let I be a closed interval and x = x(t), y = y(t) and z = z(t) be real-

valued differentiable functions defined on I. Then the points (x(t), y(t), z(t)) in the space

is called a locus of the curve represented by the parametric equations x = x(t), y = y(t),

z = z(t), t ∈ I.

Throughout this chapter we shall be concerned only with curves lying in the XY -

plane. For such curves we have z = 0. Hence they are described by x = x(t) and y = y(t).

A curve lying only in one plane is called a planer curve.

1.2. Definition. Let x = x(t), y = y(t) be a curve. If we eliminate t and obtain a relation

g(x, y) = 0, then this form is called the cartesian representation of the curve. Further, if

g(x, y) = 0 can be written in the form y = f(x) (respectively, x = f(y)), then y = f(x)

(respectively, x = f(y)) is called the cartesian equation of the curve.

1.3. Example. Let I = [0, 1] and x = t, y = t2. Then this is a curve that can also be

represented by the cartesian equation y = x2.

1.4. Definition. Let y = f(x) be a curve. Fix a point A on this curve. For a point P

on the curve, let s = arcAP be the arc length from A to P . For a point Q on the curve,
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let s + ∆s = arcAQ so that ∆s = arcPQ. Let ℓ1, ℓ2 be the tangents to the curve at the

points P
and Q making angles ψ and

ψ + ∆ψ respectively, with

a fixed line in the plane.

Clearly, the angle between

these two tangents is ∆ψ,

called the total bending or

total curvature of the arc be-

tween P and Q. Hence the

average bending or the av-

erage curvature of the curve

between these two points

relative to the arc length is

given by ∆ψ
∆s

. The bending or

the curvature of the curve at

↑

↓ →←
X

Y

O

A
s

P

∆s
Q

ψ ψ +∆ψ

∆ψ
ℓ1

ℓ2

Figure 1.4

P is defined to be dψ
ds

= lim
Q→P

∆ψ
∆s

= lim
∆s→0

∆ψ
∆s

.

2. Derivative of an arc

2.1. Proposition. Fix a point A(x0, y0) on a curve given by y = f(x). For a point

P (x, f(x)) on the curve, let s be the arc length of arcAP . (Clearly, s is a function of x.)

Then prove that

ds

dx
=

√
1 +

(
dy

dx

)2

.



2. Derivative of an arc 3

Proof.

Let y = f(x) represent the

given curve and A be a fixed

point on it. Let P (x, y) be

a generic point on the curve.

Let the arc AP = s. Take

a point Q(x + ∆x, y + ∆y)

on the curve near to P .

Let arcAQ = s + ∆s.

From the right angled trian-

gle △PNQ, we have,

↑

↓ →←
X

Y

O L M

∆x

∆y
A

Ps
∆s

N

Q

Figure 2.1

PQ2 = PN2 +NQ2 = (∆x)2 + (∆y)2

⇒
(
PQ

∆x

)2

= 1 +

(
∆y

∆x

)2

⇒
(
chordPQ

arcPQ

)2(
∆s

∆x

)2

= 1 +

(
∆y

∆x

)2

.

Taking Q→ P , we get chordPQ→ arcPQ. Hence,(
ds

dx

)2

= 1 +

(
dy

dx

)2

⇒ ds

dx
=

√
1 +

(
dy

dx

)2

.

�

The proof of the following corollary is left to the reader.

2.2. Corollary. Let x = x(t) and y = y(t) be the parametric equations of a curve. Then

ds

dt
=

√(
dx

dt

)2

+

(
dy

dt

)2

.

2.3. Exercise. In the Proposition 2.1, suppose that the curve is represented by x = f(y).

Then deduce that the derivative of the arc length ds
dy

=

√
1 +

(
dx
dy

)2
.

2.4. Definition. Let h(x, y) = 0 be a cartesian representation of a curve. By substituting

x = r cos θ and y = r sin θ, in this form we get a representation g(r, θ) = 0 of the curve

called a polar representation of the curve.

We shall be mainly dealing with the form r = f(θ) of the curve.

2.5. Theorem. For a polar equation r = f(θ) of a curve,

ds

dθ
=

√
r2 +

(
dr

dθ

)2

.
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Proof. Let r = f(θ) represent the given curve and A be a fixed point on it.

Let P (r, θ) be a generic

point on the curve. Let

arcAP = s. Take a

point Q(r + ∆r, θ + ∆θ)

on the curve near to P .

Let arcAQ = s + ∆s.

From the right angled trian-

gle △ONP as shown in fig-

ure, we have,

↑

↓ →←
X

Y

O

r

∆
s

A

r
+
∆
r

N

Q(r +∆r, θ +∆θ)

P (r, θ)

s

θ

∆
θ

Figure 2.5

sin∆θ =
PN

OP
=
PN

r
⇒ PN = r sin∆θ

and

cos∆θ =
ON

OP
=
ON

r
⇒ ON = r cos∆θ.

Also, from the figure,

NQ = OQ−ON

= r +∆r − r cos∆θ

= r(1− cos∆θ) + ∆r

= 2r sin2 ∆θ

2
+ ∆r.

Now from the right angled triangle △PNQ, we have,

PQ2 = PN2 +NQ2

⇒PQ2 = r2 sin2∆θ + (2r sin2 ∆θ

2
+ ∆r)2

⇒
(
PQ

∆θ

)2

= r2
(
sin∆θ

∆θ

)2

+

[
r sin

(
∆θ

2

)(
sin
(
∆θ
2

)
∆θ
2

)
+

∆r

∆θ

]2

⇒
(
chordPQ

arcPQ

)2(
arcPQ

∆θ

)2

= r2
(
sin∆θ

∆θ

)2

+

[
r sin

(
∆θ

2

)(
sin
(
∆θ
2

)
∆θ
2

)
+

∆r

∆θ

]2
.

Taking Q→ P , we get chordPQ→ arcPQ. Hence,

(
ds

dθ

)2

= r2 +

(
dr

dθ

)2

⇒ ds

dθ
=

√
r2 +

(
dr

dθ

)2

.
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3. Radius of curvature 5

2.6. Example. For the curve rn = an cosnθ, prove that

ds

dθ
= a(secnθ)

n−1
n .

Solution. Here rn = an cosnθ. Taking log on both the sides,

n log r = n log a+ log(cosnθ).

By differentiating this we get,

n

r

dr

dθ
= −n sinnθ

cosnθ
⇒ r1 =

dr

dθ
= −r tannθ

⇒ r2 + r21 = r2(1 + tan2 nθ) = r2 sec2 nθ

⇒ ds

dθ
=

√
r2 +

(
dr

dθ

)2

= r secnθ = a(cosnθ)
1
n secnθ = a(secnθ)

n−1
n .

�

2.7. Exercise.

1. Show that curvature of a circle is constant and is equal to the reciprocal of its radius.

2. Show that curvature of a straight line is zero.

3. Find ds
dx

for the following curves.

(i) y = a cosh x
a
. (ii) y = a log

(
a2

a2−x2

)
.

4. Find ds
dt

for the following curves.

(i) x = a(t− sin t); y = a(1− cos t).

(ii) x = a(cos t+ t sin t); y = a(sin t− t cos t).

(iii) x = aet sin t; y = aet cos t.

5. Find ds
dθ

for the following curves.

(i) r = a(1− cos θ). (ii) r2 = a2 cos 2θ.

3. Radius of curvature

3.1. Definition. Let P be a point on a curve such that the curvature of the curve at P

is nonzero. Then the radius of the curvature at P is defined to be the reciprocal of the

curvature at P and is denoted by ρ. That is, ρ = ds
dψ
.

3.2. Theorem. Let y = f(x) be a curve and P be a point on it. Then prove that the

radius of curvature at P is given by

ρ =
(1 + y21)

3
2

y2
,

where y1 =
dy
dx

and y2 =
d2y
dx2

.
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Proof. Let y = f(x) be the given curve. Then tanψ = dy
dx
. Differentiating with respect

to s, we get,

sec2 ψ
dψ

ds
=

d

ds

(
dy

dx

)
=

d

dx

(
dy

dx

)
dx

ds
= y2

dx

ds

⇒(1 + tan2 ψ)
dψ

ds
= y2

dx

ds

⇒(1 + y21)
dψ

ds
= y2

dx

ds

⇒ρ =
ds

dψ
=

1 + y21
y2

ds

dx

⇒ρ =
1 + y21
y2

√
1 + y21

⇒ρ =
(1 + y21)

3/2

y2
.

�

3.3. Theorem. Let r = f(θ) be a polar form of a curve with a point P on it. Then prove

that the radius of curvature at P is given by

ρ =
(r2 + r21)

3/2

r2 + 2r21 − rr2
,

where r1 = f ′(θ) and r2 = f ′′(θ).

Proof. From the figure it is clear that

ψ = θ + φ. Hence,

dψ

ds
=
dθ

ds
+
dφ

ds

=
dθ

ds
+
dφ

dθ

dθ

ds

=
dθ

ds

(
1 +

dφ

dθ

)
. (3.3.1)

We know that tanφ = r
r1
. Differ-

entiating this with respect to θ, we

get, →
O

θ ψ

φ

P (r, θ)

r

Figure3.3

sec2 φ
dφ

dθ
=
r21 − rr2
r21

⇒dφ

dθ
=
r21 − rr2
r21

1

1 + tan2 φ
=
r21 − rr2
r21

1

1 + r2

r21

=
r21 − rr2
r21 + r2

.

We also know that ds
dθ

=
√
r2 + r21. Hence by (3.3.1), we get,

dψ

ds
=

1√
r2 + r21

(
1 +

r21 − rr2
r21 + r2

)
=
r2 + 2r21 − rr2
(r2 + r21)

3/2
.
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Hence,

ρ =
ds

dψ
=

(r2 + r21)
3/2

r2 + 2r21 − rr2
.

�

3.4. Example. Prove that if ρ is the radius of curvature at any point P on the parabola

y2 = 4ax and S is its focus, then prove that ρ2 ∝ SP 3.

Solution. Let P (x, y) be any point on the give parabola. If the coordinates of the focus

S is given by (a, 0), then

SP =
√

(x− a)2 + y2 =
√
x2 − 2ax+ a2 + 4ax = x+ a.

Now we find ρ for the given parabola y2 = 4ax. Here 2yy1 = 4a. That is, y1 = 2a
y
. Also,

y2 = −2a
y2
y1 = −4a2

y3
. Hence,

ρ =
(1 + y21)

3/2

y2
=

(1 + 4a2

y2
)3/2

−4a2
y3

= −(y2 + 4a2)3/2

4a2

⇒ρ2 =
(4ax+ 4a2)3

16a4
=

64a3(x+ a)3

16a4
=

4(x+ a)3

a
=

4

a
SP 3.

This proves that ρ2 ∝ SP 3. �

3.5. Example. Show that the radius of curvature at any point of the curve

x = aeθ(cos θ − sin θ), y = aeθ(sin θ + cos θ) is twice the perpendicular distance of the

tangent at the point form the origin.

Solution. Here

dx

dθ
= aeθ(cos θ − sin θ) + aeθ(− sin θ − cos θ) = −2aeθ sin θ.

Similarly,
dy

dθ
= 2aeθ cos θ.

Hence y1 =
dy
dx

= − cot θ and y2 = cosec2 θ dθ
dx

= cosec3 θ
−2aeθ . Thus,

ρ =
(1 + y21)

3/2

y2
=

(1 + cot2 θ)3/2

−
(
cosec3 θ
2aeθ

) = −2aeθ.

Now the equation of the tangent at a point is

y − aeθ(sin θ + cos θ) =
dy

dx
(x− aeθ(cos θ − sin θ))

⇒y − aeθ(sin θ + cos θ) = − cot θ(x− aeθ(cos θ − sin θ))

⇒y sin θ + x cos θ − aeθ = 0.

Hence the length of the perpendicular distance of the tangent from the origin is

p =
∣∣∣ −aeθ
cos2 θ+sin2 θ

∣∣∣ = aeθ. Hence ρ = −2p. �
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3.6. Example. For the cycloid x = a(θ+sin θ), y = a(1− cos θ) prove that ρ = 4a cos( θ
2
).

Also show that ρ21 + ρ22 = 16a2, where ρ1, ρ2 are the radii of curvature at the points where

the tangents are perpendicular.

Solution. dx
dθ

= a(1 + cos θ), dy
dθ

= a sin θ. Therefore,

y1 =
a sin θ

a(1 + cos θ)
=

2 sin
(
θ
2

)
cos
(
θ
2

)
2 cos2 θ

2

= tan θ
2

⇒ y2 =
1

2
sec2 θ

2

dθ

dx
=

(
1

2 cos2 θ
2

)(
1

2a cos2 θ
2

)
=

1

4a cos4 θ
2

.

Hence,

ρ =
(1 + y21)

3/2

y2
=

(
1 + tan2 θ

2

)3/2

4a cos4
θ

2
= 4a sec3

θ

2
cos4

θ

2
= 4a cos( θ

2
).

If P (θ1) and Q(θ2) are

the points at which the

tangents are perpendicular,

then ρ1 = 4a cos( θ1
2
) and

ρ2 = 4a cos( θ2
2
). If the tan-

gents at these points make

the angles ψ1 and ψ2 with

theX-axis respectively, then

tanψ1 = dy
dx

= tan θ1
2
.

Therefore, ψ1 = θ1
2
. But

ψ1 − ψ2 = π
2
. Therefore,

θ1
2
+ θ2

2
= π

2
. Hence,

↑

↓

→←
X

Y

O

P Q

ψ1 ψ2

Figure 3.6

ρ21 + ρ22 = 16a2
[
cos2 θ1

2
+ cos2

(
π

2
− θ1

2

)]
= 16a2

[
cos2 θ1

2
+ sin2 θ1

2

]
= 16a2.

�

3.7. Example. For the curve r = a(1 − cos θ), prove that ρ2 ∝ r. Also prove that if ρ1
and ρ2 are radii of the curvature at the ends of a chord through the pole, ρ21 + ρ22 =

16a2

9
.

Solution. Here r1 = a sin θ and r2 = a cos θ. Hence,

ρ =
(r2 + r21)

3/2

r2 + 2r21 − rr2

=
(a2(1− cos θ)2 + a2 sin2 θ)3/2

a2(1− cos θ)2 + 2a2 sin2 θ − a2(1− cos θ) cos θ

=
(2a2(1− cos θ))3/2

3a2(1− cos θ)

=
(4a2 sin2 θ

2
)3/2

6a2 sin2 θ
2



5. Length of an arc 9

=
4

3
a sin θ

2
.

Thus,

ρ2 =
16

9
a2 sin2 θ

2
=

8

9
a2(1− cos θ) =

8ar

9
⇒ ρ2 ∝ r.

Let P (r1, θ1) and P (r2, θ2) be the ends of the chord through the pole. Then θ2 − θ1 = π.

Then ρ2i =
16
9
a2 sin2 θi

2
, (i = 1, 2). Hence

ρ21 + ρ22 =
16

9
a2
(
sin2 θ1

2
+ sin2 θ2

2

)
=

16

9
a2
[
sin2 θ1

2
+ sin2

(
π + θ1

2

)]
=

16

9
a2
(
sin2 θ1

2
+ cos2

θ1
2

)
=

16

9
a2.

�

Rectification

4. Derivative of an arc: Revisited

Rectification is the process of computing the length of an arc of a curve. The curves

may have different representations – like cartesian, polar and parametric. So, we shall be

dealing with all the three forms. Besides, the curve could be expressed as a combination

of arcs of two different curves yielding a new closed curve. In this case, the length of arc

will be its perimeter. The idea of finding the length of arc is simple. We have obtained

the derivative of an arc in Section 2 earlier. It is the derivative of the length of arc s with

respect to the independent variable. If we integrate the same, we shall get the length of

arc. A curve is said to be rectifiable if it is possible to find its length.

5. Length of an arc of a curve

5.1. Theorem. Let y = f(x) be a cartesian representation of a curve C. Then the

length of arc of C between two points A and B corresponding to the x-coordinates a and b

respectively, is given by

arcAB =

b∫
a

√
1 +

(
dy

dx

)2

dx.

Proof. Let s(x) be the length of arc of curve between fixed point A on the curve and the

generic point P (x, f(x)). Then integrating (??) from a to b, we have,

b∫
a

√
1 +

(
dy

dx

)2

dx =

b∫
a

ds

dx
dx
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=

b∫
a

ds

=
[
s
]b
a

= s(b)− s(a)

= arcAB − arcAA

= arcAB.

�

5.2. Theorem. Let r = f(θ) be a polar representation of a curve C. Then the length

of arc of C between two points A and B corresponding to the angles θ = θ0 and θ = θ1
respectively, is given by

arcAB =

θ1∫
θ0

√
r2 +

(
dr

dθ

)2

dθ.

5.3. Example. Find the length of arc of the parabola y2 = 4ax, (a > 0), measured from

the vertex to one extremity of its latus rectum.

Solution. We can write the given equation as x = y2

4a
. Then dx

dy
= y

2a
. Therefore,√

1 +

(
dx

dy

)2

=

√
1 +

y2

4a2
=

1

2a

√
y2 + 4a2 .

From the figure, we see that

coordinates of the vertex O

and top end of the latus rec-

tum L are (0, 0) and (a, 2a)

respectively. Hence the re-

quired length of arc is

O →
X

↑

↓Y

(a, 0)

L(a, 2a)

L′(a,−2a)

Figure 5.3

arcOL =

2a∫
0

√
1 +

(
dx

dy

)2

dy

=
1

2a

2a∫
0

√
y2 + 4a2 dy

=
1

2a

[
y

2

√
y2 + 4a2 +

4a2

2
log(y +

√
y2 + 4a2)

]2a
0

=
1

2a

[
2
√
2a2 + 2a2 log(2a+ 2a

√
2)− 0− 2a2 log 2a

]
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= a

[
√
2 + log

(
2a(1 +

√
2)

2a

)]
= a

(√
2 + log(1 +

√
2)
)
.

�

5.4. Example.

(a) Find the entire length of the astroid x2/3 + y2/3 = a2/3.

(b) Prove that the length of the curve x2/3+y2/3 = a2/3 measured from (0, a) to the point

(x, y) is given by 3
2
(ax2)1/3.

Solution. (a)

O A(a, 0)

B(0, a)

�P (x, y)

Figure 5.4

Here,

x2/3 + y2/3 = a2/3

⇒2

3
x−1/3 +

2

3
y−1/3

dy

dx
= 0

⇒dy

dx
= −x

−1/3

y−1/3
= −y

1/3

x1/3

⇒1 +

(
dy

dx

)2

= 1 +
y2/3

x2/3
=
a2/3

x2/3
= a2/3x−2/3.

From the figure, the entire length of the astroid is

4× arcAB = 4

0∫
a

√
1 +

(
dy

dx

)2

dx

= 4

0∫
a

a1/3x−1/3 dx

= 4a1/3
[
x2/3

2/3

]0
a
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= 4a1/3
(
−a2/3

2/3

)
= −6a.

Since the length of an arc is always positive, we infer that the entire length of the astroid

is 6a.

(b) The required arc length = arcBP

=

x∫
0

√
1 +

(
dy

dx

)2

dx

=

x∫
0

a1/3x−1/3 dx

= a1/3
[
x2/3

2/3

]x
0

= a1/3
x2/3

2/3

=
3

2
a1/3x2/3

=
3

2
(ax2)1/3.

�

5.5. Example. Show that the entire length of the curve x2(a2 − x2) = 8a2y2 is πa
√
2.

Solution.
The given curve is symmet-

ric about all – X-axis, Y -

axis and the origin. Putting

y = 0, we get x ∈ {0,±a}.

Also since y2 =
x2(a2 − x2)

8a2
,

we have y =
x
√
a2 − x2

2
√
2 a

.

Hence −a ≤ x ≤ a is the

only possibility for getting y

real. The shape of the given

curve is as shown in the fig-

ure. It contains two equal

loops. Now,

O A(a, 0)(−a, 0)B

↓

Y↑

X→←

Figure 5.5

8a2y2 = x2(a2 − x2)

⇒ 16a2y
dy

dx
= 2x(a2 − x2) + x2(−2x)
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⇒ dy

dx
=
x(a2 − 2x2)

8a2y

⇒1 +

(
dy

dx

)2

= 1 +

(
x(a2 − 2x2)

8a2y

)2

= 1 +
x2(a2 − 2x2)2

8a2x2(a2 − x2)

=
8a4 − 8a2x2 + a4 − 4a2x2 + 4x4

8a2(a2 − x2)

=
(3a2 − 2x2)2

8a2(a2 − x2)
.

From the figure (5.5), we say that

the entire length = 4 arcOA

= 4

a∫
0

√
1 +

(
dy

dx

)2

dx

= 4

a∫
0

3a2 − 2x2

2a
√
2
√
a2 − x2

dx

= 4

a∫
0

[
a2

2a
√
2
√
a2 − x2

+ 2
a2 − x2

2a
√
2
√
a2 − x2

]
dx

= 4

a∫
0

[
a

2
√
2
√
a2 − x2

+

√
a2 − x2

a
√
2

]
dx

= 4

[
a

2
√
2
sin−1

(x
a

)
+

1

a
√
2

(
x

2

√
a2 − x2 +

a2

2
sin−1

(x
a

))]a
0

= 4

[
a√
2
sin−1

(x
a

)
+
x
√
a2 − x2

2
√
2a

]a
0

= 4
a√
2

π

2

= πa
√
2.

�

5.6. Example. Find the length of the cardioid r = a(1 + cos θ) lying outside the circle

r = −a cos θ.
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Solution. First we find the angle between two curves at the point of their intersection.

By comparing them, we get

a(1 + cos θ) = −a cos θ ⇒
cos θ = −1

2
⇒ θ = π ± π

3
⇒

θ = 2π
3
, 4π

3
. From the figure,

we see that the given curve

is symmetric about the po-

lar axis and the required

arc length is arcABC =

2arcBA. Now for the curve

r = a(1 + cos θ),

O

A

C

B
θ = 0θ = π

θ
=

2
π3

θ
=
4π
3

Figure 5.6

r2 +

(
dr

dθ

)2

= a2(1 + cos θ)2 + a2 sin2 θ = 2a2(1 + cos θ) = 4a2 cos2 θ
2
.

Hence the required arc length

2 arcBA = 2

2π/3∫
0

√
r2 +

(
dr

dθ

)2

dθ

= 2

2π/3∫
0

2a cos( θ
2
) dθ

= 8a
[
sin θ

2

]2π/3
0

= 8a
(
sin π

3
− 0
)
= 4a

√
3.

�

6. Intrinsic equation

6.1. Definition. Let A be a fixed point on a curve C and P be a generic point on the

curve. Let ψ(P ) denote the angle between the tangents to the curve at points A and P .

Also, let s = arcAP . Then the relation between s and ψ is called the intrinsic equation

of the curve.

It is customary to fix origin (or pole) as the fixed point A if it lies on the curve.

Otherwise we mention the fixed point explicitly. We follow this convention throughout this

section including exercise. Now we obtain the intrinsic equations of the curve represented

in different forms.
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I Cartesian form

Let A(a, b) be a fixed point

and P (x, y) be a generic

point on the curve y = f(x).

We develop the equation in

a particular case when the

tangent to the curve at A is

parallel to the X-axis. Then
O

A
ψ

ψ

P

X
→

Y↑

Figure 6.1

s =

x∫
a

√
1 +

(
dy

dx

)2

dx (6.1.1)

and

tanψ =
dy

dx
. (6.1.2)

Eliminating x from (6.1.1) and (6.1.2) we get a relation

F (s, ψ) = 0,

which is the intrinsic equation of the curve in cartesian form.

If the curve is represented in the form x = f(y) or in a parametric form, then the

intrinsic equation can be obtained similarly by eliminating y or the parameter t respectively.

However, in the polar form, the coordinates are changed, so we give intrinsic equation in

this case separately.

II Polar form

Let A(r1, θ1) be a fixed point

and P (r, θ) be a generic

point on the curve r = f(θ).

We develop the equation in

a particular case when the

tangent to the curve at A

is parallel to the polar axis.

Then

O
θ

A

ψ

ψ

φ

P

→

Figure 6.1

s =

θ∫
θ1

√
r2 +

(
dr

dθ

)2

dθ. (6.1.3)

Now from the figure,

ψ = θ + φ, (6.1.4)

where φ is the angle between the radius vector and the tangent at point P . We also know

that

tanφ = r
dθ

dr
. (6.1.5)

Eliminating φ and θ from (6.1.3), (6.1.4) and (6.1.5) we get

F (s, ψ) = 0, (6.1.6)

which is the intrinsic equation of the curve in polar form.
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6.2. Example. Find the intrinsic equation of the Cardioid r = a(1 + cos θ). Hence prove

that s2 + 9ρ2 = 16a2, where ρ is the radius of curvature at any point of the curve.

Solution. Here r = a(1 + cos θ). Therefore, dr
dθ

= −a sin θ. Hence
tanφ = r dθ

dr
= −1+cos θ

sin θ
= − 2 cos2 θ

2

2 sin θ
2
cos θ

2

= − cot θ
2
= tan

(
π
2
+ θ

2

)
. Hence,

φ =
π

2
+
θ

2
.

Also,

ψ = θ + φ = θ +
π

2
+
θ

2
=

3θ

2
+
π

2
. (6.2.1)

Now,

s =

θ∫
θ1

√
r2 +

(
dr

dθ

)2

dθ

=

θ∫
0

√
a2 (1 + cos θ)2 + a2 sin2 θ dθ

= a

θ∫
0

√
2 (1 + cos θ) dθ

= a

θ∫
0

√
4 cos2 θ

2
dθ

= 2a

θ∫
0

cos θ
2
dθ

= 2a
[
2 sin θ

2

]θ
0

= 4a sin θ
2

= 4a sin

(
ψ

3
− π

6

)
, (by (6.2.1)) (6.2.2)

which is the required intrinsic equation. By differentiating (6.2.2), we have ρ = ds
dψ

=
4a
3
cos
(
ψ
3
− π

6

)
. Hence 3ρ = 4a cos

(
ψ
3
− π

6

)
. So, s2 + 9ρ2 = 16a2. �

6.3. Example. Show that the intrinsic equation of the curve y3 = ax2, is 27s = 8a(sec3 ψ−
1).

Solution. We can write the given equation as x = 1√
a
y3/2. Then dx

dy
= 3

2

√
y
a
. Here the

tangent to the curve at the origin is Y -axis. Therefore, tanψ = dx
dy
, That is,

tanψ =
3

2

√
y

a
. (6.3.1)
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Now,

s =

y∫
0

√
1 +

(
dx

dy

)2

dy

=

y∫
0

√
1 +

9y

4a
dy

=
4a

9

2

3

[(
1 +

9y

4a

)3/2
]y
0

⇒27s = 8a

[(
1 +

9y

4a

)3/2

− 1

]
⇒27s = 8a

[
(1 + tan2 ψ)3/2 − 1

]
⇒27s = 8a(sec3 ψ − 1).

O

Y

X

ψ

P
��

↑

→←

Figure 6.3

�

♣♣♣♣♣♣♣♣


